GENERALISING FRACTIONAL BROWNIAN MOTION IN DISCRETE TIME: A SURPRISING SELF-SIMILARITY

Darryl Veitch

1CUBIN, Department of Electrical & Electronic Engineering
University of Melbourne, Vic 3010 Australia

Collaborators
András Gefferth, Istvan Maricza, Sandor Molnár
(Budapest University of Technology and Economics)
Imre Ruzsa
(Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences)

Generalising in Discrete Time?

First we Restrict

- Study the *fractional Gaussian Noise* (fGn)
- Equivalent to fBm in continuous time
- A simple time series in discrete time: \(X(k) = Z(t + k) - Z(t), \) \(k = 0, 1, 2, \ldots \)

Then we Generalise

- Motivated by idea of *second order self-similarity*
- Discrete fGn taken to be the only such process
- In fact *not*, if use natural renormalisation
SECOND ORDER STATIONARY TIME SERIES

Second order discrete time process \(\{X(t), t \in \mathbb{Z}\} \).
Mean \(\mu \) and variance \(\mathcal{V} > 0 \)
Autocovariance

\[
\gamma(k) := E[(X(t) - \mu)(X(t + k) - \mu)], \quad k \in \mathbb{Z}
\]

Autocorrelation

\[
\rho(k) := \frac{\gamma(k)}{\gamma(0)} = \frac{\gamma(k)}{\mathcal{V}}
\]
Equivalent Descriptors

Variance Time Function

\[\omega(n) = \sum_{k=0}^{n-1} \sum_{i=-k}^{k} \gamma(i) = n\gamma(0) + 2 \sum_{i=1}^{n-1} i\gamma(n-i), \quad n = 1, 2, 3 \cdots, \]

Correlation Time Function

\[\phi(n) = \frac{\omega(n)}{\omega(1)} = \frac{\omega(n)}{\mathcal{V}} \]

Note \(\omega(n) \) just variance of \(\sum_{t=1}^{n} X(t) \), and can invert: \(\gamma = \delta_n^2(\omega) \)

\[
\delta_n^2 \{f(i)\}(n) = \begin{cases}
 f(1) & : n = 0 \\
 \frac{1}{2}(f(2) - 2f(1)) & : n = 1 \\
 \frac{1}{2}(f(n + 1) - 2f(n) + f(n - 1)) & : n > 1.
\end{cases}
\]

Note \(w(1) = \gamma(0) = \mathcal{V} \), so \(\phi(1) = \rho(0) = 1 \).
The *fractional noise* (\(\text{FN}_H \)) class of processes is defined by

\[
\rho_{\text{FN}}(k) = \delta_i^2 \{ i^{2H} \}(k)
\]

or equivalently

\[
\phi_{\text{FN}}(n) = n^{2H}
\]

where \(H \in [0, 1] \) is the Hurst parameter.

Note \(H = 0 \) is usually excluded!
For a fixed \(m \geq 1 \) the \textit{aggregation of level} \(m \) of the original process \(X \) is the process

\[
X^{(m)}(t) := \frac{1}{m} \sum_{j=m(t-1)+1}^{mt} X(j).
\]

Notation: \(\gamma^{(m)} \), \(\rho^{(m)} \), \(\omega^{(m)} \), \(\phi^{(m)} \) and \(\nu^{(m)} \) for the \(m \)-aggregation.
Effect of Aggregation

From $\gamma^{(m)}(k) = E[X^{(m)}(0)X^{(m)}(k)] - \mu^2$:

$$\gamma^{(m)}(k) = \frac{1}{m^2} \left[m\gamma(km) + \sum_{i=1}^{m-1} i(\gamma((k-1)m + i) + \gamma((k+1)m - i)) \right].$$

And for the VTF

$$\nu^{(m)} = \gamma^{(m)}(0) = \frac{1}{m^2} \left(m\gamma(0) + 2 \sum_{i=1}^{m-1} i\gamma(m - i) \right) = \frac{\omega(m)}{m^2},$$

and so $\nu^{(mn)} = \frac{\omega(mn)}{(mn)^2} = \nu^{(m)}(n) = \frac{\omega^{(m)}(n)}{n^2}$, and so

$$\omega^{(m)}(n) = \frac{\omega(mn)}{m^2}.$$
Renormalisation

Aggregation rescales time, what about amplitude?

Natural choice is to normalise by the variance $\mathcal{V}^{(m)}$.

\[
\rho^{(m)}(k) = \frac{m \rho(km) + \sum_{i=1}^{m-1} i(\rho((k - 1)m + i) + \rho((k + 1)m - i))}{m \rho(0) + 2 \sum_{i=1}^{m-1} i \rho(n - i)}
\]

or

\[
\phi^{(m)}(n) = \frac{\phi(mn)}{\phi(m)}.
\]

Again, the correlation time formulation is simpler.
Definition (Second-Order Self-Similarity)

A process is second-order self-similar if $\rho^{(m)} = \rho$, or equivalently $\phi^{(m)} = \phi$, for all $m = 1, 2, 3, \cdots$.

What processes satisfy this?

Using the CTF, setting $\phi^{(m)} = \phi$, we obtain the fixed point equation

$$\phi(nm) = \phi(n)\phi(m)$$
DEFINITION (SECOND-ORDER SELF-SIMILARITY)

A process is second-order self-similar if $\rho^{(m)} = \rho$, or equivalently $\phi^{(m)} = \phi$, for all $m = 1, 2, 3, \ldots$.

What processes satisfy this?

Using the CTF, setting $\phi^{(m)} = \phi$, we obtain the fixed point equation

$$\phi(nm) = \phi(n)\phi(m)$$
DEFINITION (SECOND-ORDER SELF-SIMILARITY)

A process is second-order self-similar if $\rho^{(m)} = \rho$, or equivalently $\phi^{(m)} = \phi$, for all $m = 1, 2, 3, \ldots$.

What processes satisfy this?

Using the CTF, setting $\phi^{(m)} = \phi$, we obtain the fixed point equation

$$\phi(nm) = \phi(n)\phi(m)$$
It is trivial to check that $\phi_{FN}(n) = n^{2H}$ is a solution.

Sinai showed (1976) that if power-law normalisation is used, then FN_H is the only class of solutions.

Since $\mathcal{V}(m) = \mathcal{V}m^{2H-2}$ for FN_H, the two definitions (power-law or variance based normalisation) are equivalent in this important but special case.
GENERAL SOLUTION OF THE FIXED POINT EQUATION

\[\phi(m) = \prod_{i=1}^{s} \phi(p_i)^{r_i}, \text{ for each } m = \mathbb{Z}^+, \]

where the \(p_i \) are the \(s \) distinct prime factors of \(m \), and \(r_i \) is the multiplicity of \(p_i \).
THREE SOLUTIONS

- FN_{0.6}
- Not Valid
- AP_{7,0.3}
TWO TRICKIER EXAMPLES

The Question

Background

Self Similarity

Almost Periodic

Classification

The diagrams illustrate two examples of functions with different characteristics.

- **Left Diagram**: Shows a function $\rho(k)$ exhibiting self-similarity and randomness. The function oscillates around the zero line with varying amplitudes.

- **Right Diagram**: Displays a function $\rho(k)$ that is almost periodic with a repeating pattern. The function has a clear and regular oscillation with a consistent gap between the peaks.

These examples highlight the differences between self-similar and periodic functions, showcasing their distinct behaviors over the range of k values shown.
A function is a *valid* autocovariance function if it is positive semi-definite. Recall that a function $f(k)$ defined on $k = 0, 1, 2, \ldots$ is said to be *positive semi-definite* if for any $n \in \mathbb{Z}, n > 0$ and for any real vector a of length n

$$\sum_{1 \leq i, j \leq n} a_i f(|i - j|) a_j \geq 0.$$

A 2nd order self-similar process must obey $\phi(nm) = \phi(n)\phi(m)$ and be valid.
The Almost Periodic Class

Definition (The Almost Periodic Family $\text{AP}_{q,c}$)

The two parameter family of fixed points defined by $\phi(1) = 1$, $\phi(p) = 1$ for all primes p except $p = q$, where $\phi(q) = c$, $c \in (0, 1)$, will be called Almost Periodic, and denoted by $\text{AP}_{q,c}$.
TWO EXAMPLES

The Question

Background

Self Similarity

Almost Periodic

Classification

The diagrams illustrate two examples of functions and their logarithmic representations. The plots show the behavior of the functions $\phi(n)$ and $\rho(k)$ for different values of n and k. The logarithmic plots provide insights into the scaling properties of these functions, which are characteristic of self-similar and almost periodic phenomena.
NEW SECOND-ORDER SELF-SIMILAR PROCESSES

DEFINITION (THE ALMOST PERIODIC FAMILY $\text{AP}_{q,c}$)

The two parameter family of fixed points defined by $\phi(1) = 1$, $\phi(p) = 1$ for all primes p except $p = q$, where $\phi(q) = c$, $c \in (0, 1)$, will be called *Almost Periodic*, and denoted by $\text{AP}_{q,c}$.

THEOREM

Each member of the $\text{AP}_{q,c}$ family is a second-order self-similar process.
PROOF OF VALIDITY OF $\mathcal{AP}_{q,c}$ FAMILY

PROOF BY CONSTRUCTION

- Construct process with $\phi_m(n) = 0$ when $m|n$, else $\phi_m(n) = 1$.
- Define a new CTF based on an infinite sum:
 \[
 \phi_{q,c}(n) := \frac{1 - c}{c} \sum_{k=1}^{\infty} c^k \phi_{q^k}(n).
 \]
- This CTF is that of $\mathcal{AP}_{q,c}$!
- For partial sum, CTF is valid (process exists as sum of independent processes).
- Show CTF valid in limit using definition.
Classification

Theorem (SS Process Classification)

The set of valid fixed points is given by the union of the FN_H and $AP_{q,c}$ families.
SKETCH OF PROOF

TWO CONSEQUENCES OF POSITIVE SEMI-DEFINITENESS

I \[\phi(m - n) \leq 2(\phi(m) + \phi(n)) \] for all \(m, n \in \mathbb{Z}^+ \), \(m - n \geq 1 \).

II For any \(n \in \mathbb{Z}^+ \), \(|S(n)/\mathcal{V}| < 2\sqrt{\phi(n)} + C \),
 \(C \) a constant independent of \(n \).
 \[S(n) = \sum_{k=-n}^{n} \gamma(k), \quad n \geq 0 \]

Powers of a prime \(p \) lie on unique power-law curve:

\[f(x) = x^{\alpha_p}, \quad \text{where} \quad \alpha_p = \frac{\ln \phi(p)}{\ln p}. \]

Only if the \(\alpha_p \) are all equal is the fixed point of \(\text{FN}_H \) type.
SKETCH OF PROOF

CASE 1: \(\phi(p) > 1 \) FOR SOME PRIME \(p \)

- Implies \(\alpha := \sup_p \alpha_p > 0 \).
- If the \(\alpha_p \) equal, fixed point is of power-law type,
- If \(\alpha \in (0, 2] \rightarrow \text{valid} \) (just \(FN_H \) with \(H \in (0, 1] \)).

Assume then that the \(\alpha_p \) are not all equal.

CASE 1A: SUPRENUM \(\alpha \) NOT ATTAINED

- Implies \(\exists \) sequence \(p_i : \alpha_{p_i} > \max_{q<p_i} \alpha_q \)
- Can use (i) to show a contradiction \(\rightarrow \text{invalid} \)

CASE 1B: SUPRENUM \(\alpha \) ATTAINED

- Can find a \(q \) with \(\alpha = \alpha_q \), and other \(p \) with \(\alpha_p < \alpha \)
- Use (ii) and Euler’s theorem to show contradiction \(\rightarrow \text{invalid} \)
Sketch of Proof

Case 2: \(\phi(p) \leq 1 \) for all primes \(p \)

- Case of \(\phi = 1 \) is just \(FN_0 \rightarrow \text{valid} \).
- Case of only one prime \(q : \phi(q) < 1 \) included in \(AP_{q,c} \rightarrow \text{valid} \).
- Assume \(\exists \) different primes \(q_1 \) and \(q_2 \) for which \(\phi(q_i) < 1 \) (includes power-law fixed points with \(\alpha < 0 \) (\(H < 0 \))).
- Use fact that \(\phi(q_i^r) < \epsilon \) for \(r \) suff. large to show \(\phi(k) \rightarrow 0 \ \forall k \).
- Only satisfied by \(\phi = 0 \), impossible as \(V > 0 \rightarrow \text{invalid} \).
The Importance of $H = 0$

Theorem (The DoA of FN_0 is Large)

Let X be any stationary process such that $\rho_\infty = \lim_{k \to \infty} \rho(k)$ exists and $\rho(1) < 1$. Then the differenced process $Y(i) = X(i + 1) - X(i)$ is in the domain of attraction of FN_0.
A NEW CLASS OF SECOND ORDER SELF-SIMILAR PROCESSES

THE NATURE OF DISCRETE SECOND-ORDER SELF-SIMILARITY