A Characterisation Framework for Short and Long Memory Processes

András Gefferth*† Darryl Veitch‡
István Maricza* Sándor Molnár*

*HSN Lab
†Sponsored by the AEAP, an Australian government funded award, administered by the Department of Employment, Education, Training and Youth Affairs.
‡Ericsson and Melbourne University Laboratory (EMULab), Australia
1. Confidence intervals for the mean (based on $\bar{X} = \sum_{i=1}^{n} X_i$)

2. Is the mean rate changing?
Background

Stationary second order processes:

\[E[X] = \mu \quad \text{Var}[X] = \nu > 0 \quad \text{CoVar}[X_t, X_{t+k}] = \gamma(k) \]

Long-Range Dependent (LRD) processes, definitions:

1. \(\gamma(k) \sim c_\gamma k^{-\beta} \)
2. \(\gamma(k) \sim c_\gamma(k) k^{-\beta} \), \(c_\gamma(\cdot) \) slowly varying
3. \(\sum_{-\infty}^{\infty} \gamma(k) = \infty \), infinite covariance sum
4. more general?

Aggregation of level \(m \) (average over non-overlapping blocks of width \(m \)):

\[X_i^{(m)} = \frac{1}{m} \sum_{m(i-1)+1}^{mi} X_k \]

Connection to mean estimation:

\[\text{Var}[\bar{X}] = \nu^{(m)} = \text{Var}[X^{(m)}] \]
Objectives

Proving/Disproving/Clarifying “Folklore Results”:

- \(v^{(m)} \sim \frac{c_\gamma m^{2H-2}}{H(2H - 1)} \iff \gamma(k) \sim c_\gamma k^{2H-2} \), true? proven?
- fractional Gaussian noise (fGn) the only 2nd order Self-Similar (SS) process?
- all asymptotically 2nd order SS processes (ASS) are “fGn-like”?

Main New Results:

- “LRD” processes for which \(\gamma(k) \not\sim c_\gamma k^{2H} \).
- classification scheme for SS and ASS processes.
- proof for
 most cases that SS processes must be fGn, but
- examples of SS “covariance functions” which are
 not fGn-like.
Definitions

Begin with correlation function: \(\rho(k) = \gamma(k)/v, \quad (\gamma(k) \in [-1, 1]) \)

Integrate twice for two other quantities with physical meaning:

\[
S_2(i) = \sum_{k=-i}^{i} \gamma(k)
\]

\[
w(m) \equiv m^2 v^{(m)} = \sum_{i=0}^{m-1} S_2(i) = E[(X_1 + \ldots + X_m)^2] = \sum \text{matrix terms} \geq 0
\]

\(\gamma(k), \ S_2(i), \ w(m)\) are all equivalent!

\(\gamma(k) \rightarrow \gamma \quad \text{exists?} \)
\(S_2(i) \rightarrow S_2 \quad \text{exists?} \)
\(w(m) \rightarrow w \quad \text{exists?} \)

Typically all are defined, but have counterexamples for each.
The Fractional Gaussian Noise Fixed Point Family

Fractional Gaussian Noise, parameterised by H:

$$\rho_{fGn}(k) = \frac{1}{2} \left\{ |k - 1|^{2H} - 2|k|^{2H} + |k + 1|^{2H} \right\}$$

<table>
<thead>
<tr>
<th>Class</th>
<th>H</th>
<th>S_2</th>
<th>$w(\infty)$</th>
<th>$\rho^*(k), k \geq 3$</th>
<th>$\rho^*(k)$</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>∞</td>
<td>∞</td>
<td>1</td>
<td>\rightarrow</td>
<td>Non ergodic</td>
</tr>
<tr>
<td>A</td>
<td>$(0.5, 1)$</td>
<td>∞</td>
<td>∞</td>
<td>$(0, 1)$</td>
<td>\downarrow</td>
<td>LRD</td>
</tr>
<tr>
<td>B</td>
<td>0.5</td>
<td>ν^*</td>
<td>∞</td>
<td>0</td>
<td>\rightarrow</td>
<td>White noise</td>
</tr>
<tr>
<td>C</td>
<td>$(0, 0.5)$</td>
<td>0</td>
<td>∞</td>
<td>$(-0.5, 0)$</td>
<td>\uparrow</td>
<td>anticorrelated</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>ν^*</td>
<td>0</td>
<td>\rightarrow</td>
<td>MA(1) process</td>
</tr>
<tr>
<td>E</td>
<td>< 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\downarrow</td>
<td>not valid as a process</td>
</tr>
</tbody>
</table>
Aggregation, Fixed Points and Self-Similarity

Aggregation: \(X_i \leftrightarrow X_i^{(m)} \), \((w(m) = m^2v^{(m)}) \),

\(\gamma() \leftrightarrow \gamma^{(m)}() \) \(\rho() \leftrightarrow \rho^{(m)}() \) \(w() \leftrightarrow w^{(m)}() \)

Definition \(\rho() \) is a **fixed point** or second order Self-Similar (SS) iff \(\rho^{(m)}() \equiv \rho(), \forall m \in \mathbb{Z}^+ \).

Theorems:

- \(w(mn)w(1) = w(m)w(n) \iff \rho^{(m)} \equiv \rho \)
- If \(\lim_{m \to \infty} \rho^{(m)}() \equiv \rho^*() \) then \(\rho^* \) is a fixed point.
 - say \(\rho \) is in the **Domain of Attraction (DoA)** of \(\rho^* \), call it ASS.
- \(\lim_{m \to \infty} w(mn)/w(m) = \phi(n) \) exists \(\iff \rho() \) is ASS.
 \(\phi(n) = n^{2H}, H \in [0,1] \iff \) limit is fGn-like.

Earlier Definitions of Fixed Points (SS):

- \(\rho^* = \rho_{fGn} \)
- \(\gamma^{(m)}(k) = \gamma(k)m^{-(1-H)} \) for all \(m \).
Taxonomy of Fixed Points: $w^*(mn)w^*(1) = w^*(m)w^*(n)$

Valid fixed points (+ve definite $\gamma(k)$)

Three kinds of fixed points:
- fGn-like
- strange, non-fGn-like. Do they exist?

Non-Valid fixed points (not +ve definite)
Non “LRD” Asymptotically SS Processes for $H \in [0, 1]$

Here $\rho(k) \not\propto c \rho(k)^{(2H - 2)}$, but $w^{(m)}$ regularly varying, so process is ASS to a fGn fixed point.
A New Kind of Self-Similar Process?

can 55 million people be wrong?...