Infinite Divisibility and Traffic Data

Patrice Abry* and Darryl Veitch**

* CNRS–ENS Lyon, France,
 http://www.ens-lyon.fr/~pabry

** EMULab, University of Melbourne, Australia
 http://www.emulab.ee.mu.oz.au/~darryl

Thanks to
Pierre Chainais, Stephane Roux, Patrick Flandrin (CNRS–ENS Lyon),
Lidong Huang (EMULab), Jörg Micheel (WAND, Waikato, NZ)
Telecommunications Networks and Their Traffic

Networks: A Deep Hierarchy of Systems

- Physical Layer technology (coding, error recovery..)
- Circuit vs Packet Switched Paradigms
- Connection oriented vs connectionless philosophy
- Protocols and their encapsulation, eg: Ethernet[IP [TCP[HTTP]]]
- Routing, signaling, admission control...

Tele–Traffic: A Turbulent River of Myriad Sources

- Geographic Complexity
 - Network Edge: distributed sources, destinations,
 - Internally: confluence and splitting of streams at switches
- Offered Traffic Complexity
 - User ‘sessions’, durations, arrivals ..
 - Applications, underlying protocols
 - Underlying data objects: files, video, audio..
- Temporal Complexity: the offered traffic is time-varying
 - Time scale rich: μs to months, 1kbps to Terabits/s
- Burstiness a key feature
 - Temporal: dependence in time, often LRD
 - Amplitude: large fluctuations, often highly non-Gaussian
In General

- Highly complex, and users ‘independent’, so model as stochastic.
- Can model Source or Aggregate behaviour.
- Black box statistical model or structural hierarchal models, or both.
- Can analyse many different time series derived from the (sub)streams:
 - Time indexed: # new connections, # connections current, ...
 - Connection/Flow indexed: durations, # of pkts/bytes, inter-arrival times
- Historically Markovien models dominated (tractability, low burstiness).
- Currently a lot of measurement driven work.
- Now accepted that scaling a robust feature of packet traffic.

In This Talk

- Consider aggregate Internet traffic focusing on TCP (2Mpbs link).
- Describe scaling features: both temporal and amplitude burstiness.
- Model as Black Box, ‘enlightened black box’, and discuss network origins.
- Introduce Infinitely Divisible Cascades as a modelling class.
- Use wavelets as the natural analysis tool for scaling data.
Examples of Scaling in Traffic

ETHERNET (LAN)

INTERNET (WAN)

NB DE PAQUETS

(bloc 10 MS)

NB DE CONNESSIONS ACTIVES

(bloc 10 MS)

![Graphs showing traffic patterns](image-url)
Available Scaling Models

Philosophy of scaling:

No characteristic scale, but invariant relationships between scales

Families of Scaling Processes

- $1/f$ processes ($1/f^\alpha$)
- (exactly) Self-similar (SS) processes
- Long-Range Dependent (LRD), and anti-persistent processes
- Locally self-similar processes
- Processes with fractal sample paths
- Multifractal measures/processes
- Multiplicative Cascades (eg Conservative MCs)
- Infinitely Divisible Cascades (IDC)

Use as Traffic Models

- **Using LRD:** $X(t)$ is an On/Off Process, with infinite variance for On/Off.
- **Using SS:** $Y(t) = m(t) + \sigma(t)Z_H(t)$, with $Z_H(t)$ a fractional BM, where

 \[
 X(t) \quad \text{is the traffic rate at time } t
 \]

 \[
 Y(t) \quad \text{is the total traffic arriving in } [0, t], \text{ ie } Y_t = \int_0^t X(t).
 \]
Examples of Scaling in Traffic: 2nd Order Wavelet Analysis

ETHERNET: bytes per 12ms bin.

INTERNET: new connections per 10ms bin.

Logscale Diagram, $N=2$
$[(j_1,j_2)= (3,15), \ \alpha-est = 0.59, \ Q= 0.011384], \ D-init$

Logscale Diagram, $N=2$
$[(j_1,j_2)= (8,19), \ \alpha-est = 0.59, \ Q= 0.81665]$
Wavelets are ideal for scaling processes, as they are localised time-scale tools.

- From the mother wavelet, \(\psi_0(u) \), satisfying \(\int \psi_0(u)du = 0 \) one defines the
- Wavelet ‘bases’ \(\psi_{a,t} = \frac{1}{|a|} \psi_0\left(\frac{u-t}{a}\right) \) note dilation with scale!
- Continuous Wavelet Transform of \(X(t) \) is coefficients: \(T_X(a, t) = \langle X, \psi_{a,t} \rangle, a \geq 0 \).
- Discrete Wavelet Transform are the same coefficients, but only those on the dyadic grid: \(d_X(j, k) = T_X(a = 2^j, k2^j) \). These can be calculated in an \(O(n) \) algorithm.
- The number of vanishing moments, i.e., the largest \(N \geq 1 \) such that \(\int t^k \psi(t) dt \equiv 0 \) for \(k = 0, 1, \ldots N - 1 \) controls the ability to ‘cancel’ LRD and even non-stationarity.
Properties

Definition: If $X = \{X(t), t \in \mathcal{R}\}$, then $\{X(t)\} \overset{d}{=} \{c^{-H}X(ct)\}$ for any $c > 0$.

Wavelet detail processes: $\{d(j, k), k \in \mathcal{Z}\} \overset{d}{=} \{2^{j(H+1/2)}d(0, k), k \in \mathcal{Z}\}$.

Unproblematic detail dependencies:

$\{d(j, k), k \in \mathcal{Z}\}$ stationary for each j fixed

$\text{Cov} [d(j, k)d(j, k')] \leq 2^j |k - k'|^{2(H-N)}$, for $|2^j k - 2^j k'| \to \infty$.

Scaling Exponent revealed in moments: $\mathbb{E}|d(j, k)|^q = 2^{jqH}\mathbb{E}|d(0, k)|^q$

Exploitation in Estimation

Moments Estimated via: $S_q(j) = \frac{1}{n_j} \sum_k |d(j, k)|^q$

Exponent Estimated via: weighted regression of $\log_2[S_q(j)]$ vs j, slope is qH.

This simple SS scaling seen in diverse traffic time series over large scales
Smaller Scales, Richer Models, ‘Multiscaling’
Beyond Mono-Parameter Scaling

Self-Similarity: \[\mathbb{E}|d(j, k)|^q = C_q(2^j)^{qH} = C_q \exp(qH\ln(\alpha)) \]
- A single scaling parameter \(H \)
- Power-laws

Multi-Scaling: \[\mathbb{E}|d(j, k)|^q = C_q(2^j)^{H(q)} = C_q \exp(H(q)\ln(\alpha)) \]
- A collection of parameters: \(H(q) \)
- Power-laws
Beyond Power-Law Scaling

Self-Similarity: \(E|d(j, k)|^q = C_q(2^j)^{qH} = C_q \exp(qH \ln(a)) \)
- A single scaling parameter \(H \)
- Power-laws

Multi-Scaling: \(E|d(j, k)|^q = C_q(2^j)^{H(q)} = C_q \exp(H(q) \ln(a)) \)
- A collection of parameters: \(H(q) \)
- Power-laws

Infinitely Divisible Cascade: \(E|d(j, k)|^q = C_q \exp(H(q) n(a)) \)
- Two collections of parameters: \(H(q), n(a) \)
- No Power-Law!
- but separability of order \(q \) and scale \(a \).

But! relative power-laws remain:
\[E|d_X(j, k)|^q = C_{p,q}(E|d(j, k)|^p)^{H(q)/H(p)} \]
- tested by plotting \(\log_2 S_q(j) \) vs \(\log_2 S_p(j) \), if passes,
- \(H(q) \) and \(n(a) \) can be estimated.
Testing for IDC in TCP Connection Arrivals

Estimation of $H_p(q) = H_1(0.5)$, $N = 3$

Estimation of $H_p(q) = H_1(1)$, $N = 3$

Estimation of $H_p(q) = H_1(1.5)$, $N = 3$

Estimation of $H_p(q) = H_1(2)$, $N = 3$

Estimation of $H_p(q) = H_1(2.5)$, $N = 3$

Estimation of $H_p(q) = H_1(3)$, $N = 3$

Estimation of $H_p(q) = H_1(4)$, $N = 3$

Estimation of $H_p(q) = H_1(5)$, $N = 3$

Estimation of $H_p(q) = H_1(6)$, $N = 3$
Estimating the IDC in TCP Connection Arrivals

Unlike MS, IDC hypothesis is valid over both scaling ranges.
Assuming the IDC formalism, we have the following relationship between scales $a_1 > a_2$:

$$E|T_2|^q = e^{-H(q)(n(a_2) - n(a_1))}E|T_1|^q$$

Trick: let T be a positive r.v. with PDF F_T, generating function \hat{F}_T, and $U = \ln T$.

$$E|T|^q = Ee^{q\ln|T|} = Ee^{qU} \equiv \hat{F}_U(q)$$

We can rewrite in terms of moment generating functions of the $U_a = \ln |T_a|$:

$$\hat{F}_{U_2}(q) = e^{-H(q)(n(a_2) - n(a_1))}\hat{F}_{U_1}(q)$$

which describes the connection between the marginals at two scales, and in fact any set of scales $a_1 > a_2 > \cdots a_{n-1} > a_n$.

Think of convolution, interpret $\exp\{-H(q)(n(a_2) - n(a_1))\}$ as the MGF of a distribution function G_{a_1,a_2}, the propagator, possessing the semi-group property: $G_{a_1,a_3} = G_{a_1,a_2} * G_{a_2,a_3}$.

Special Cases

- **H-SS**: $G_{a_1,a_2} = \delta(-H\ln(a_1/a_2))$, translation in scale: $F_1(d) = F_2\left(\frac{d}{\alpha_0}\right)$, $\alpha_0 = \left(\frac{a_1}{a_2}\right)^H$

- **MS**: $n(a_2) - n(a_1) = \ln\left(\frac{a_2}{a_1}\right)$
Results for the Inter-Arrival Series of TCP Connections

EMULab

H(q)/H(p), p=1

log₂(T)

log(P(log(T)))

log T

log(P(log(T)))

log T
So Where is the Infinite Divisibility?

The kernel is a family of DF’s forming a convolution semi-group, with generator corresponding to $-H(q)$.

Connection to Infinite Divisibility:

The class of DFs from semi-groups of convolution is the class of ID distributions.

- Natural to let the $\{U_a\}$ be ID, though perhaps not necessary.
- Connection to marginals of $\{X(t)\}$, and other constraints? needs further work.
- A Markov process in scale \Rightarrow Fokker Planck, evolution along decreasing scale.

Interpretation for $X(t)$

- A scaling creating, multiplicative, operation is performed, of a nature given by $H(q)$
- $n(a_2) - n(a_1)$ is the number of times performed between scales a_1 and a_2.
Returning to Traffic

Where did we find IDC type scaling?

- Time indexed: arrivals, departures, active. (For UDP also)
- Connection indexed: inter-arrivals

We did not find it in:

- Connection indexed: durations, # bytes, # packets (modelled as i.i.d. pareto).

Main Results:

- When two scaling regimes are found, IDC is usually verified, showing that in fact the two are not unrelated.
- The generator $-H(q)$ does not change past the change point, but $n(a)$ does, the same scaling laws are being applied, but at a different ‘speed’.
- The deviation of $H(q)$ from linearity is weak, ‘barely multifractal’.
- Very similar statistics between arrivals and departures.
- Details inside connections essential to explain burstiness.
Current Directions

On the Cascades

- Understanding of the implications of the formalism on \(\{X(t)\} \), what is allowed?
- Precise examples of (stationary) IDC processes, and their generation.
- Understanding the connection between arrivals and departures,
 Wild Conjecture: A IDC point process is invariant under random reordering.

On Estimation Theory

- Refinement of wavelet estimators of \(H(q), n(a) \).
- Accurate calculation of confidence intervals at each \(q \).

On the Modelling

- Identification of the network mechanism modifying \(n(a) \),
 Conjecture: the logarithmic rescaling of TCP slow start, acting up to a (distribution of) round trip times.
- Understanding the connection between arrivals and departures – can we exclude network based causes?