A Methodology for Clock Benchmarking

Julien Ridoux j.ridoux@ee.unimelb.edu.au
Darryl Veitch d.veitch@ee.unimelb.edu.au
Introduction

- **Higher demand on the network, better clocks**
 - Network applications are more and more distributed
 - Users/Providers need higher reactivity and more precision
 - Essential for testbeds and performance evaluations

- **Limitation: the quality of clock synchronisation**
 - Need for higher accuracy
 - Need for higher reliability

- **Difficult to benchmark timekeeping systems**
 - Against which reference?
 - How to access clock instantaneously?
Clock and Timestamping errors

Event occurring at true time

Clock Time

True Time

t_k

t_k

Timestamps

Perfect Clock

Drifting Clock
Clock and Timestamping errors

Event occurring at true time

Timestamps

Clock Time

$C(t'_k)$

tk

tk'

True Time

Perfect Clock

Drifting Clock

t'_k

$C(t'_k)$
Clock and Timestamping errors

- **Clock error or offset**
 \[\theta(t_k) = C(t_k') - t_k \]

- **Timestamping error**
 \[\xi(t_k) = t'_k - t_k \]

- **Total error:**
 \[E(t'_k) = C(t'_k) - t_k = \theta(t'_k) + \xi(t_k) \]
In practice, no perfect clock for benchmarking

Total relative error:

\[E_{C_1, C_2}(t_k) = C_1(t_k') - C_2(t_k'') \]

\[= \theta C_1(t_k') - \theta C_2(t_k'') + \xi C_1(t_k) - \xi C_2(t_k) \]

- The clock and timestamping errors combine

Without a perfect clock; benchmarking a challenge

- Timestamping error: eliminate / estimate
- Clock error: relative / absolute

Need a strong methodology
3 Clocks under study (Linux & FreeBSD)

- **SW-GPS**: `ntpd + GPS sync.` Absolute Clock
- **SW-NTP**: `ntpd + Net. sync.` Absolute Clock
- **TSCclock**: Net. sync, Absolute & Difference Clock
CubinLab Testbed

- **Kernel timestamping of UDP packets**
 - Outgoing / Incoming directions
 - External: DAG Card
 - Internal: Multiple clocks simultaneously

![Diagram of experiment setup](image)
Internal comparison

- **Modified kernels: timestamps taken “back to back”**
 - Identical delay accessing the clocks $\rightarrow t'_k = t''_k$
 - Timestamping errors cancel $\rightarrow \xi C_1(t_k) = \xi C_2(t_k)$

- **Obtain a comparison of the two clocks offsets**
 \[
 E_{C_1,C_2}(t_k) \approx \theta C_1(t_k) - \theta C_2(t_k)
 \]
 - Free of timestamping error
 - No absolute performance with respect to true time
External comparison

- **Use of the DAG card**
 - Considered best absolute time reference available →
 \[
 E_{C,Dag}(t_k) = \theta_C(t_k) + \xi_C(t_k) - \xi_{Dag}(t_k)
 \]
 - Provides absolute reference
 - But suffers from timestamping error

- **Additional kernel modifications to reduce noise**
 - Standard location in kernel for all clocks
 - Improved locations for the TSCclock
 - As close as possible to the last bit transmitted/received
 - Interrupt bottom-half / driver implementation
Reducing kernel timestamping error

Unix PC

DAG

Host

\[t_a \quad t_g \quad t_f \]

\[d_{h\uparrow} \quad d_{h\downarrow} \]

\begin{align*}
\text{Outgoing} & : \text{med}= -268 \ iqr= 36.1 \ [\text{mus}] \\
\text{Incoming} & : \text{med}= 92.1 \ iqr= 8.01 \ [\text{mus}] \\
\text{Standard IN} & : \text{med}= 177 \ iqr= 10.2 \ [\text{mus}] \\
\text{Improved IN} & : \text{med}= -84.5 \ iqr= 14.9 \ [\text{mus}] \\
\text{Improved OUT} & : \text{med}= -84.5 \ iqr= 14.9 \ [\text{mus}] \\
\text{Standard OUT} & : \text{med}= 92.1 \ iqr= 8.01 \ [\text{mus}] \\
\end{align*}
Reducing kernel timestamping error

- **Standard timestamping location with the TSCclock**
 - Outgoing direction **noisier**: IQR 100 µs larger
 - **Asymmetry** of 100 µs between Outgoing / Incoming
 - Improved location much better

![Graphs showing data distribution for Standard IN (1), Improved IN (2), Improved OUT (3), and Standard OUT (4)]
Reducing kernel timestamping error

- **Standard timestamping location with the TSCclock**
 - Outgoing direction **noisier**: IQR 100 µs larger
 - **Asymmetry** of 100 µs between Outgoing / Incoming
 - Improved location much better

- **The same clock in both directions !!!**
 - Which direction to trust?

![Graph showing the comparison between standard and improved timestamps for incoming and outgoing directions.](image)
Host RTT measurement

- **If we use both directions**
 - Minimum Host RTT: \(r^h = d^{h\uparrow} + d^{h\downarrow} \)
 - Available timestamps: \(R^h = r^h + \xi(t_f) - \xi(t_a) \)
 - Host RTT available since measured with the same clock
 - Minimum can be filtered; noise is the width of histogram of \(R^h \)
Recovering one-way measurements

- Ambiguity due to the asymmetry that we can’t evaluate

\[\text{asym} = d_{h\downarrow} - d_{h\uparrow} \quad \text{asym} \in [-r^h, r^h] \]

- One way delays can’t be recovered individually
- Host RTT \(\rightarrow \) impact of noise on one-way measurement

 - Median is ambiguous but bounded by \(2 \times r^h \)
 - Histograms are broadened because of \(\text{IQR}(R_h^h) \)
Beware of problematic drivers/NIC

- **Two hosts with same OS / hardware**
 - FreeBSD 6.1
 - Pentium-D architecture
 - But different NIC / Driver
 - Maxwell : Broadcom 5157 Gig-E (Brown)
 - Tastiger : 3Com 10/100 Mbps (Black)

- **Choose carefully!**
 - The quality of R^h measurement drives the accuracy of the methodology!
Let’s get started

- **Now that we have**
 - an accurate testbed
 - internal / external timestamping and validation
 - improved kernel timestamping
 - removed problematic hardware

- **... we can start the detective work**
SW-NTP vs. TSCclock

- **Internal comparison** → large oscillations ± 1ms

- **External comparison** → SW-NTP responsible
 - Noise: IQR(R^h) = 37µs, r^h = 10µs (ambiguity = 20µs)
 - Accurate view for SW-NTP, difficult diagnosis for TSCclock
SW-GPS vs. TSCClock

- **Internal comparison → similar behavior (IQR = 14µs)**

- **External Comparison**
 - Noise: IQR(R^h) = 23µs
 - $r^h = 10µs$ (ambiguity = 20µs)
 - One clock may have (IQR = 0 + noise). But can’t be verified!
 - TSCclock slightly ahead but which clock is worse?
SW-GPS vs. TSCclock (Zoom)

- Observe SW-GPS and TSCclock more closely
 - Observe oscillations with a 20mn period

- Both clocks show oscillations
- Temperature effect (air-conditioning variations)
SW-GPS and (TSCclock) Difference Clock

- **Measure UDP packets inter-arrivals**
 - Compare SW-GPS IAT and TSCclock Difference Clock IAT

- **Final error in a ±1µs band**
 - Resolution of SW-GPS is 1µs (struct timeval)
 - Can’t interpret errors within this band

- **Spikes of up to 10µs magnitude**
 - By construction, can’t be due to the difference clock
 - Small time scale stability of the oscillator
 - Due to the SW-GPS clock!!
Conclusion

- **Clock benchmarking**
 - is a challenge
 - requires good quality hardware
 - a strong methodology
 - requires rigour and attention to details

- **Our methodology and testbed**
 - highlights the need for kernel modifications
 - presents Internal / External complementary comparisons
 - provides comparison down to the system clock resolution
 - allows to track causes of observed strange behaviors

j.ridoux@ee.unimelb.edu.au
http://www.cubinlab.ee.unimelb.edu.au